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What an interdisciplinary background might look 
like:
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FIG. 6. The mean fixed drift load, equal to the first moment of the
distribution peq(x) when B � 1, as a function of effective population
size N in the n-dimensional model (N � 10). The dashed curve
represents the upper limit equation (27), where � � 0. Solid squares
indicate simulation results with � � 0.1 using the original muta-
tional model, which assumes exponential distributions of mutational
effects along each axis that accumulate to produce a bell-shaped
gamma distribution for total mutation length (eq. 16). We were
unable to obtain simulation runs for values of N greater than 30
because mutations that fixed were extremely rare under these con-
ditions. Open triangles represent the mean of five simulation runs
consisting of 1000 fixed mutation steps each, with an exponential
distribution (� � 0.1) describing the total mutation length. Open
diamonds represent the mean of five simulation runs consisting of
1000 fixed mutation steps each, with an L-shaped gamma distri-
bution (� � 0.1, a � 0.5) describing the total mutation length.

when � is large (i.e., when the average phenotypic effect of
a mutation is small).
Given that the first moment obtains a maximum value at

� � 0 in simulation results, we can approximate an upper
bound estimate of the mean distance to the optimum by set-
ting � � 0 such that equation (21) becomes:

B
m � . (22)1 1 � 2N

By substituting equation (22) into the absolute fitness func-
tion (7), we find that the upper bound estimate of the expected
drift load from fixed mutations is:

1
L̄ � . (23)

1 � 2N

Note that this upper bound estimate is independent of the
selection intensity, 1/B (cf. eq. 8). Because equation (23) is
a reciprocal function of N, the mean drift load due to fixed
mutations becomes very small for N � 10. For reasonably
sized populations (N � 100), the probability of fixation (5)
for deleterious mutations becomes very small and most such
mutations are readily compensated in this model.

Evolution in Many Dimensions

The mutation probability function m(z�, z) becomes very
complicated when Fisher’s space consists of more than one
dimension. Given a population residing at a distance z from
the optimum, we must consider the probability of a mutation
vector’s length r and direction � hitting each point on the
surface of a hypersphere with radius z� to calculate m(z�, z).
An exact solution appears to be analytically intractable. How-
ever, simulation results show that a maximum with respect
to � exists for the first moment of the distribution peq(z�) at
� � 0. Therefore, we set � � 0 to obtain an upper bound
estimate of the fixed drift load for the case of exponentially
distributed mutation lengths along each axis. This assumption
allows a population at a distance z from the optimum to jump
to any point within the n-space with equal probability. The
n-space can then be thought of as a ‘‘uniform probability
volume’’ divided into a series of concentric shells around the
optimum, like an onion. It follows that the probability density
function of mutations terminating on the surface of a hyper-
sphere centered at the optimum with radius z� is:

n�1n(z�)
m(z�) � . (24)nB

Here we have limited our attention to nonlethal mutations
(z� � B). Note that equation (24) is independent of the original
position z. Equation (24) is equal to the limit of (16) as �
approaches zero. To prove this, we use the following as-
ymptotic expansion for the denominator of equation (16):

� �(n)
��B n j�(n) � �(n, �B) � e (�B) (�B) (25)�

�(n � 1 � j)j�0

(eq. 6.2.5 from Press 1992). Substituting this expansion into
equation 16 and taking the limit, we have:

n ��z� n�1� e (z�)
lim � �(n)�!0 ��B n je (�B) (�B)�

�(n � 1 � j)j�0

��z� n�1 n�1e (z�) n(z�)
� lim � . (26)nB�!0 1 �B

��B ne (B) � � · · ·� �n (n � 1)n

Our moment analysis of an n-dimensional model using this
approximation produces results that are very close to those
from our simulations when � is near zero (see Figs. 6, 7).
The upper limit solution for the first moment can be ap-
proximated by the sum of a simple rational polynomial and
a vanishing term:

n �2NnB (2N ) e
m � � O . (27)1 � �n � 2N �(n) � �(n, 2N )

The neglected terms are very nearly zero in the domain N �
n. Even for N � n, simulations indicate that nB/(n � 2N) is
a good approximation for the mean distance to the optimum
for low � and provides an upper bound for m1 as � increases.
Note that the first term reduces appropriately to equation (22)
in one dimension (n � 1). Consequently, the mean equilib-
rium drift load caused by the fixation of new mutations is:

3 years 2 years 5 years
5 years and counting..



Quick outline

• 3 examples of using models from other disciplines 
to tackle problems in HIV.

1. Using linguistics to analyze HIV study enrollment 
data.

2. Identifying agents of selection using artificial 
intelligence.

3. Inferring the date of HIV infection, and timing the 
emergence of adaptations, using population 
genetics.



Studying hidden populations.

• A hidden population is comprised of individuals 
sharing an attribute that is difficult to identify, 
carries a social stigma, or is illegal.

• e.g., injection drug use.

• Such attributes can be associated with a higher 
risk of HIV infection.

• Can be sampled along social networks (peer 
referral).

1. Linguistics and HIV enrollment data.



Respondent-driven sampling (RDS).
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Poon et al. (2009) PLoS ONE 4(9).

1. Linguistics and HIV enrollment data.



Interpreting RDS data.

• Study recruitment of injection drug user network is 
a “branching process” (tree-shaped).

• Is there variation in recruitment behaviour?

• Do recruits emulate the behaviour of their 
recruiters?

• A model from linguistics (Chomsky 1955) is useful 
for studying hidden variation in tree structures.

1. Linguistics and HIV enrollment data.



(G)

(A(GGH))

(A(AAB(GH)))

S

(A(AAB(A(a)B)))

Study is initiated.

Seed individual enrolls into study.

Seed recruits three peers into study.

Subsequent recruitment by peers.

Termination of study, coupons no

longer issued to recruits.

(17) 

Evidently, description of aentencea in such tenaa 
permita considerable simplification over the 
word-by-word model, since the composition of a 
complex claaa of expreealona such as XP Fan be 
stated just once in the grammar, and this class 
can be used as a building block at various 
points in the construction of sentencee. We now 
aak what fow of grammar corresponds to this 
conception of lingulatic structure. 

3.2. A phrase-structure grammar is defined by a 
finite vocabulary (alphabet) Y , a finite aet 2 
of initial strings in Y end E finite aet Fof 
rules of the form: X +?i, where X and Y axe 
strings in Y 

P 
. Path such rule is Interpretedas 

the instruct on: rewrite X as Y. For reaaona 
that will appear directly, we require that In 
each such [ 2 ,F] grammar 

(18) I: : xl,.., cn 

F: x1 - y1 . 
. 

‘rn - ‘rn 

Yi is formed from Xi by the replacement of a 

single symbol of Xi by some string. Neither 

the replaced symbol nor the replacing string 
may be the identity element U of footnote 4. 

Given the [ c ,F] grammar (18). we say that: 

(19)(i) 

(ii) 

(W 

(iv) 

(4 

a atring BRollowa from a string a 
if a&xi W end $4*YinW, for 

some i I rni7 
a derivation of the string S is a 
sequence D=(Sl,. . ,St) of atr 1 ngn, 
where Sle c and foreach i< t, Si+l 

followa from Si: 

a atring S is derivable from (18) 
If there is a derivation of S in 
terms of (18); 
a derivation of St is terminated if 

there la no atring that followsfrom 
St; 
a string St la a terminal string if 

It la the last line of a terminated 
derivation. 

A derivation is thua roughly analogous toa 
proof, with c taken as the axiom system and F 
as the rule* of Inference. We say that L La 
derivable languape if L la the set of strings 

that are derivable from some L x ,F] grammar, 
and we eey that L is a terminal lm if it is 
the set of terminal strings from some system 
c 2 4’1. 

In every Interesting case there will be a 
terminal vocabulary VT (VT C VP) that 

exactly characteriaer the terminal strings, in 
the sense that every terminal string la a string 
in VT and no symbol of VT la rewritten in any of 
the rules of F. In such a case we can interpret 
the terminal strings as constituting the law 
under analysis (with Y aa its vocabulary), and 
the derivations of thege strings as providing 
their phrase structure. 

3.3. Aa a simple example of a system of the form 
(18). consider- the foliowing smell 
grammar: 

(20) C : WSentencen# 
I: Sentence - l$VP 

VP - Verb*NP 
NP - the-man, 

Verb - took 
Among the derivations from (20) we 
particular : 

(21) Dl: $~%nfit;~~;# 
..- - - -.. 

part of Pngliah 

the” book 

have, in 

#?henmannYerbnXPn# 
#“thenmannYerbn thenbookn# 
#“the” man” tookm thenbook” # 

D2 : #“Sentence”# 
WXPnYPn# 
#C\thenmannYPP”# 
#%renmanr\VerbnXPn# 
#*the* mann tooknl?Pn# 
#nthenmanntookn thefibookn# 

These derivations are evidently equivalent; they 
differ only in the order in which the rules are 
applied. We can represent this equivalence 
graphically by constructing diagrams that 
correapondd, in an obvious wey, to derivations. 
Both Dl and D2 reduce to the diagram: 

(22) #*Sentencefi # 

/\ 
WP VP 

tkL Yed\Ap 

tcaok d>ok 
The diagram (22) gives the phrase structure of 
the terminal sentence a the man took the book,” 
just as in (17). In general, given a derivation 
D of a string S, we say that a substring a of S 
is an X if in the diagram corresponding to D, a 
is traceable back to a single node, end this node 
ta labelled X. Thus given Dl or D , correapond- 
ing to (22), we say that sthenmanl is an NP, 3 
“tooknthenbookfi is a VP, nthe”bookll ie an 
HP, athenmann tooknthenbooka is a Sentence. 
flmanntook,ll. however, is not a phrase of this 

Using linguistics to analyze recruitment trees.

1. Linguistics and HIV enrollment data.



Recruits emulate the recruitment behaviour of their 
recruiters.
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1. Linguistics and HIV enrollment data.



Agents of selection on HIV.

• Much of HIV evolution is driven by the host-
specific immune response.

• e.g., human leukocyte antigens (HLAs), antibodies

• encoded by highly variable regions of the human 
genome.

• Can offer significant protection from HIV infection 
(HLA B*5701 in elite controllers).

2. Agents of selection



Identifying agents of selection.

• A statistical association between a polymorphism in 
the HIV genome and a factor in the environment can 
be due to:

1. a “true” effect of the factor on HIV;

2. confounded by a correlation between factors in the 
environment;

3. confounded by an epistatic interaction between 
polymorphisms in HIV.

• How can we tell these apart?

2. Agents of selection



Confounding - the “ice-cream” problem.

An example of confounding: does ice-cream cause 
people to drown?

censored from analysis

2. Agents of selection

Consider a public swimming 
pool.

Ice-cream sales are correlated 
with drownings.

Bad A.I. (red) would conclude 
that eating ice-cream makes 
you drown.

Good A.I. (green) would 
recognize that this association 
is confounded by sunny days.



Bayesian networks.

• A class of models from artificial intelligence 
(machine learning).

• Variables are represented as “nodes” in a graph.

• Arrows (edges) are drawn to represent a conditional 
dependence of variable X on Y.

• Originates from Sewall Wright’s method of path 
coefficients.

2. Agents of selection



Graph inferred from analysis of HIV-1 and HLA 
variation among n=886 patients in BC.
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2. Agents of selection



Studying within-host HIV evolution.

• Next-generation sequencing enables us to 
sequence 1,000’s of HIV genomes from an infection 
in one run.

• Ideal raw material for analyzing how HIV evolution 
unfolds within a patient.

• No software - we have to make the tools ourselves.

3. Timing HIV infections.



The coalescent.

• A retrospective model from population genetics.

• Predicts the time since the most recent common 
ancestor of a random sample from a population. 

• Combine with a model of molecular evolution 
(molecular clock) and serial samples.

• Can estimate the time of infection; when certain 
mutations emerged.

3. Timing HIV infections.



HIV transmission bottleneck causes time to MRCA 
to predict time of infection.

BCCfE Forefront Lecture Series - April 13, 2011

The time of HIV infection is predicted by the 
TMRCA from 454 data.
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3. Timing HIV infections.



Reconstruct HIV evolution along coalescent tree 
to time emergence of adaptations.

3. Timing HIV infections.
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Timing the Emergence of CXCR4-Using Variants Within Patient 
Compartments by the Coalescent Analysis of V3 Deep Sequence Data

Art FY Poon1, Luke Swenson1, Diana Edo-Matas2, Evelien M Bunnik2, Hanneke Schuitemaker2, Angélique B van't Wout2, 
P Richard Harrigan1

1BC Centre for Excellence in HIV/AIDS, British Columbia, Canada; 2University of Amsterdam, Amsterdam, Netherlands.

Background

Methods

Results
• The emergence of CXCR4-using HIV-1 variants (X4) within 
patients is associated with disease progression and precludes 
HIV coreceptor antagonist-based therapy.

•  The coalescent is a model of the ancestry of a random sample 
of individuals from a population.

•  Freely-available software (BEAST) enables us to sample 
coalescent trees from the posterior distribution given 
longitudinal sequence data.

•  Fitting a model of sequence evolution to a given tree (HyPhy) 
yields posterior distributions of character states at every node 
from which we can sample ancestral sequences.

•  We analyzed 2 longitudinal data sets from Shankarappa 
(1999) and the Netherlands SI/NSI group, comprising clonal env 
sequences and deep 454 sequence data from plasma and 
PBMC, respectively.

Time to most recent common ancestor (tMRCA) 
predicts seroconversion date
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Estimates of tMRCA (y-axis) from the coalescent analysis of the Shankarappa 
clonal env sequences truncated to the V3 region; these estimates were not 
noticeably different from those obtained from the full sequence data.  
Months post seroconversion were extracted from sequence labels.  
Estimates of tMRCA tend to be greater than the months post seroconversion, 
most likely because tMRCA coincides with the time of infection that precedes 
seroconversion by roughly 3 to 6 months.  See also Herbeck et al. (2006) 
and Anderson et al. (2011).

Maximum clade credibility tree for patient 
13845 (plasma), coloured by g2p prediction.

The maximum clade credibility (MCC) tree is chosen from a random 
sample of trees as the best representation of the order of common 
ancestry in the sample.  Branches in the MCC tree were coloured 
according to g2p predictions of both observed and reconstructed 
ancestral sequences (red = CXCR4-using).
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Estimation of tMRCA with progressive censoring 
of longitudinal samples.

(A) The y-axis displays the difference between median estimates of tMRCA from 
the full clonal sequence data (Shankarappa) versus subsets formed by 
progressive censoring of early time points.  Points are labeled with the number 
of samples remaining.  In general, the loss of early samples leads to 
underestimation of tMRCA, particularly when the earliest sample is more than 2 
years post seroconversion.   (B) The y-axis displays the difference between 
median estimates of tMRCA and months post seroconversion.  Estimation of tMRCA 

appears to be fairly robust to the progressive censoring of the most recent 
samples.
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Estimates of tMRCA are more recent in PBMC than 
plasma, but X4 ancestors emerge at similar times

Sequence reconstructions of MRCA, X4-
MRCA and earliest X4 ancestors.

Ancestor PBMC FPR Plasma FPR
13885

13907

13845

13988

13912

13993

13908

13951

MRCA CTRPNNNTRRSIHIGPGRAFYTTGGIIGDIRQAHC 22.3 CTRPNNNTRKSIHIGPGRAFYTTGGIIGDIRQAHC 20.4
X4-MRCA .....I.I..H..........A.---T....R... 0.4 ................................... 20.4
earliest X4 .....I.I..H..........A.---T....R... 0.4 .......I.R...........A....T....R... 2.7

MRCA CTRPNNNTRRSINIGPGRAFYTTGQIIGDIRQAHC 44.8 CTRPNNNTRKSINIGPGRAFYTTGEIIGDIRQAHC 43.8
X4-MRCA .........KR.SL....V................ 0.9 ..........R.SL..........Q.......... 1.3
earliest X4 .........KR.SL....V................ 0.9 ..........R.SL..........Q.......... 1.3

MRCA CTRPNNNTRKSIHIGPGRVFYATGGIIGDIRRAHC 5.3 CIRPNNNTRKSIHIGPGRTFFATGEIIGDIRRAHC 44.2
X4-MRCA .A........G.............E.......... 2.9 ..........G.......V.Y.............. 5.0
earliest X4 .A........G.............E.......... 2.9 .M........G.......V.Y.......N...... 1.7

MRCA CIRPNNNTRKGIHIGPGRAFYTTGEIIGDIRQAHC 17.8 CTRPNNNTRKSIHIGPGRAFYTTGEIIGDIRQAHC 24.6
X4-MRCA ..........G........V....K.......... 2.6
earliest X4 ..........G........V....K.......... 2.6

MRCA CTRPNNNTRKSISIGPGRAFYATGEIIGDIRQAHC 31.3 CTRPNNNTRKSISIGPGRAFYATGEIIGDIRQAHC 31.3
X4-MRCA ................................... 31.3 ................................... 31.3
earliest X4 .........QR........................ 1.7 ..........R............RQ.......... 0.7

MRCA CTRPNNNTRKSIHIGPGRAFYTTGEIIGDIRQAHC 24.6 CTRPNNNTRRSIHIGPGRALFTAGEIIGDIRQAHC 72.1
X4-MRCA ................................... 24.6 ............Y......R....K......K.Y. 1.7
earliest X4 .........R..Y......RF.A.K......K.Y. 1.7 ............Y......R....K......K.Y. 1.7

MRCA CTRPSNNTRQGIHIGPGRAFYATTKIIGDIRQAYC 8.5 CTRPSNNTRQGIHIGPGRAFYATTDIIGDIRKAYC 43.0
X4-MRCA ...............................K... 5.8 ................................... 43.0
earliest X4 .........R.........I...........K... 1.7 .........R.........I....K.......... 1.7

MRCA CTRPNNNTRKSINIGPGRAFYTTGAIIGNIRQAHC 44.9 CTRPNNNTRKSINIGPGRAFYTTGAIIGNIRQAHC 44.9
X4-MRCA ..........G.TL....V.....K...D...... 2.5 ........................K...D...... 7.1
earliest X4 ..........G.TL....V.....K...D...... 2.5 ........K.G.TL....V.....K...D...... 3.4

The majority-rule consensus of 10,000 samples of ancestral sequences are 
shown for each patient, ancestor (total MRCA, X4-MRCA, and earliest X4), and 
compartment.  Conserved residues are censored with a period (".") to highlight 
substitutions.  g2p FPR % values are given for each sequence, where an FPR 
near 0 indicates a high probability of CXCR4-usage.

The Amsterdam Cohort Studies on HIV-1 infection and AIDS (ACS) is 
comprised of men who have sex with men (MSM) who were seropositive 
at enrolment.  Blood samples at approximately 3 month intervals were 
obtained from 8 participants who enrolled between 1988 and 1995 and 
reported at least three negative MT-2 assays in the 12 months prior to 
their first positive MT-2 assay result.  Samples were separated into 
plasma and PBMC fractions that were subjected to deep sequence 
analysis on a Roche/454 GS-FLX platform as previously described in 
Swenson et al. (2010).  The sequence data were processed using a 
pipeline implemented in Ruby that utilizes a modified Smith-Waterman 
algorithm to perform pairwise alignments against a sample-specific 
consensus sequence and screen for indel errors.  HIV coreceptor tropism 
was predicted for each sequence using the g2p algorithm.

The performance of using BEAST to reconstruct the time scale of within-
host evolution from longitudinal sequence data was assessed by 
analyzing HIV-1 env clonal sequences from Shankarappa (1999).  
Sequences were truncated to the V3 region to mimic the deep sequence 
data from the ACS cohort.  BEAST analyses were performed on 
complete and censored data sets using the same settings as described 
below.

16 alignments from the ACS cohort (8 patients × 2 compartments) were 
batch converted into BEAST XML files using a custom Python script that 
applied the following settings: HKY85 model of nucleotide substitution; a 
piecewise-constant Bayesian skyline with 5 population size classes with 
uniform prior (0, 109); relaxed molecular clock (uncorrelated lognormal); 
and tracking of the most recent common ancestor (MRCA) of the clade 
containing all observed sequences predicted to be CXCR4-using 
according to the g2p algorithm.  For each alignment, 2 replicate Monte 
Carlo Markov chain (MCMC) samples were run for 108 steps by 
distributing BEAST (v1.6.1) jobs in parallel on an in-house Linux cluster.  
Replicate chain samples were inspected for convergence, thinned to 100 
steps and merged, and Newick tree strings were extracted using a 
custom Python script.  

The sampled trees were imported into HyPhy and branch lengths were 
constrained to scale by a global factor.  Ancestral sequences were 
reconstructed by fitting a model of codon substitution (MG94 crossed 
with TN93) by maximum likelihood, and time-stamped using the 
information contained in the Newick tree strings.  Because codon models 
do not handle indels and 6 alignments contained indel polymorphisms, 
we fit a non-reversible model of indel evolution by maximum likelihood in 
HyPhy and used the resulting ancestral reconstructions to modify the 
sequences from the codon model.  

The ancestral sequences were scored by the g2p algorithm and the 
Newick trees were annotated with the resulting scores according to the 
Nexus/FigTree format.  Maximum clade credibility trees were generated 
for each tree sample using TreeAnnotator.  All figures (with exception of 
trees) were generated in R.

•  The time to the most recent common ancestor (tMRCA) is a good 
estimator of the time scale of an infection, and is robust to 
incomplete sampling.

•  Estimates of tMRCA are consistently more recent in PBMC than 
plasma, implying rapid turnover of PBMC.

•  The earliest CXCR4-using variants arose at similar times in 
PBMC and plasma, averaging 8 months (range 2.1 - 27.2) 
before the patient was diagnosed with an NSI (non-syncytium 
inducing) to SI switch.

•  Mutational pathways to acquiring the CXCR4-usage 
phenotype are highly variable among patients - in some cases, 
different pathways are taken in PBMC and plasma (13845).

Summary

Patient samples are arranged along the y-axis.  The x-axis indicates time in units 
of months before diagnosis of a change from NSI to SI by MT-2 assay.  
Histograms are coloured red for plasma-derived samples, and blue for PBMC.   
Each histogram represents the distribution of times to the most recent common 
ancestor (tMRCA) from samples of coalescent trees (light shade) or the earliest X4 
ancestor (dark shade).  A solid line is drawn to indicate the median time of the 
earliest X4 ancestors.  Triangles are drawn to indicate the median times to the 
most recent common ancestor of all X4 sequences (X4-tMRCA) in each 
compartment.  When the triangle and median line coincide, the earliest X4 
ancestor is also the MRCA of X4 sequences.
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HIV needs to bind one 
of two coreceptors to 

enter a host cell.

Some drugs block the CCR5 
coreceptor, but HIV can 
switch to using CXCR4.
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