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Introduction 
In the current study we develop a Criminal Movement Model (CriMM) to 
investigate the relationship between simulated travel routes of offenders along 
the physical road network and the actual locations of their crimes in the same 
geographic space. Research has shown that a disproportionate amount of crime 
is concentrated at or near crime attractor locations, which are highly frequented 
places like shopping malls, parking lots and sports stadiums [1][3][4]. However, 
attractors have also been theorized to have an impact on the spatial distribution 
of crime within crime neutral areas. Crime Pattern Theory states that an 
offender’s direction of travel to a criminal event coincides with paths he or she 
frequently travels on a daily basis such as to work or home [1]. It also suggests 
that criminals tend to plan their crimes at known crime attractors, and as a result 
they may select other targets along these routes if criminal opportunities 
present themselves. Thus it is expected that crimes will be committed along 
routes between offenders’ homes and  attractors. 

Description of the Model 
CriMM was developed to reconstruct the most likely path taken by an offender 
from their home location to an attractor. These paths are reconstructed to 
analyze their spatial relationship with crime locations. We make the assumption 
that most commuters take routes that are the shortest in terms of distance or 
time, enabling us to use Dijkstra’s shortest path algorithm [2].  Given a road 
network, and home and crime locations of offenders, CriMM generates paths for 
all offenders. It then identifies the most frequently travelled road segments and 
calculates the distance of crime locations to generated paths.  

CriMM 

CriMM Inputs 

• Road Network  

• Home Location (H) 

• Property Crime Location (C) 

• Attractor Locations (An) 

Assigning Attractor for Offender (An) 

• d(C, An)=distance from crime to attractor 

• d(H, An)=distance from home to attractor 

• If d(C, An)<d(H, An) 

• crime is closer to attractor →attractor An is chosen 

Generating Path for Offender from H to An 

• Path= Dijkstra’s algorithm run from H to An 

Calculating Distance Between Crime and Path 

• Three Different Distance Measures: 

• Euclidean : shortest straight line distance from crime to path   

• Dijkstra : length of shortest distance route from crime to path 

• Block : number of nodes (intersections) travelled through to get    
    from crime to path      

Figure 1:  A general outline of  CriMM 

Assigning Attractors for Offenders 

Simulation and Results 

Figure 3:  CriMM run on a road network of five cities within the Greater Vancouver 
Regional District (GVRD)  in British Columbia, Canada. 7,807 offenders committing 
property crimes in the region were included.  

Distance from Crimes to Paths using 
Three Distance Measures 

Percentage of 
Crimes (%) 

Distance Measure 30 % 70% 

Euclidean 32m 500m 

Dijkstra 50m 1000m 

Block 0 blocks 5 blocks 

Figure 4: Results after measuring the distance between all crime locations and their 
simulated paths for all 7,807 offenders. As the distance between crime and path 
increases the percentage of crimes in those categories rapidly decreases.  

Discussion 
The results highlight the fact that there is an underlying pattern explaining the 
occurrence of crimes within crime neutral areas. The high percentage of crimes found 
to occur very close to the simulated paths reaffirms that offenders tend to travel and 
commit crimes along routes that they are familiar with. Most often they will veer off 
their path only if a criminal opportunity is nearby and also quite visible, according to 
Crime Pattern Theory. Results from CriMM can inform police and law-enforcement 
where to focus crime prevention strategies.  

Further Research 
Currently CriMM is being  extended 
into a probabilistic model in order to 
predict the locations of attractors. 
Starting from each offender’s crime 
location, we extend their path for n 
steps, and create a path based on 
probabilities assigned to each road 
segment. These then take into 
account the general direction of the 
offender’s home to crime vector, and 
how frequently roads are taken by 
commuters in the network. 
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Figure 2:  Assigning attractor to offender based on home and crime locations.  
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Since the d(C, A1)< d(H, A1) for Attractor 1, Attractor 1 is chosen. A path is then 
generated from the home location to attractor 1.  
 

Figure 4:  Kernel density map of property crime rates within  the five cities studied 
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Figure 6: Generating probabilistic path for offender  


